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A finite element analysis of a honeycomb panel has been performed to understand the deflections of the
panel due to its own weight, under different support conditions. The results from the analysis have been
used to provide design guidelines for adequately supporting the panels to minimize their deflection due to
the gravitational force.

1. Introduction

The Compact Muon Solenoid (CMS) detector is one of the two large general purpose
detectors to be installed at the Large Hadron Collider (LHC) at CERN (The European
Laboratory for Particle Physics), located outside Geneva, Switzerland. Fig. 1 shows a
schematic representation of the CMS detector along with the muon chambers. The
endcap muon detection system (cathode strip chamber) of CMS detector is proposed to
be made of seven honeycomb panels, clamped around their outer perimeter with very
precise spacer bars and supported at few other points (using buttons of precise
thicknesses) in between. Fig. 2 shows a drawing of one of such honeycomb panel, while
Fig. 3 provides schematic representations of the cross-sectional views along the length of
the panel showing the assembly of the seven panels.

The honeycomb panels being used at Fermilab for the endcap muon cathode strip
chambers consist of two sheets of approximately 1/16” thick copper coated fiber glass
epoxy laminate (FR4) panels, separated by and bonded to approximately ½” thick
polycarbonate 1/8” (3 mm) diameter cell core by a Fermilab approved epoxy adhesive.
The thickness of the polycarbonate cell core material is required not to vary more than +/-
0.005” so as to meet the finished bonded panel requirements. The non-copper coated
sides of the FR4 material are sanded and bonded to the cell core using a wet lay up of
epoxy adhesive, completely saturating a non-woven polyester fiber sheet material used as
scrim material between cell core and FR-4.
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Figure 1: Schematic representation of the CMS detector showing the muon chambers.

One of the essential design constraints is the uniformity of the gap between the two
panels, which should not vary by more than 0.010” (0.25 mm) over the entire surface of
the panels. Also, the finished panels should be flat within 0.007” over any 12” of surface
distance in any direction. However, excessive deflection (bowing) of the panels due to
their own weight has been observed. This leads to a non-uniform gap between the two
panels, which is not acceptable.

It is the intent of this paper to develop a finite element model, which can be used to
compute panel deflections under different support conditions. Such a model can then be
used to design supports for the panels such that the uniformity of the gap between two
panels is within the design constraints. Theoretical calculations were performed on
honeycomb panels of simple shapes (such as rectangular) to verify the finite element
model used in this study. However, note that due to the trapezoidal shape of the actual
panels and also due to the very tight design constraints, such simple models could not be
extended to analyze the actual honeycomb panels.
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Also, since the honeycomb material is not an isotropic material, proper care should be
exercised in model development. For example, Reference [1] reports a value for the
Young’s modulus of the panel to be 10.1 GPa based on the experimentally measured
slope of applied load vs. deflection, under a certain support condition. This number for
the Young’s modulus of the panel has been used by another researcher to compute the
deflections of the honeycomb panel under different support conditions (including the 4-
button constraint case). However, note that this is not the right approach and would
certainly give erroneous results. The quantity of interest to compute panel deflections is
the “flexural rigidity” of the panel and not some value for the panel’s Young’s modulus.
With this in mind, the next section provides a theoretical background on bending of
plates and the extension of the theory for honeycomb materials.

2. Theoretical background

2.1 Bending of thin plates
The governing equilibrium equation for the bending of thin plates is given by:

                                                     ,4
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where w is the out of plane displacement, Pz is the out of plane force acting per unit area
of the plate and D is the flexural rigidity of the plate given by the following expression:
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where E is the Young’s modulus of the plate, t is the thickness and ν is the Poisson’s
ratio. The solution of the governing equation (1) is dependent on the boundary conditions
of the problem and also on the applied loading. For example, for a simply supported
rectangular plate of dimensions a x b subjected to a uniformly distributed load over the
entire surface area of the plate, the out of plane deflection w at any point (x,y) can be
obtained as:
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Similarly, for a single load concentrated at any given point (ηξ , ) of the plate, deflection
w at any point (x, y) can be obtained as:
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2.2 Bending of honeycomb panels

Fig. 4 Schematic of a honeycomb structure.

Fig. 4 provides a schematic representation of a honeycomb structure. Due to the nature of
its construction, honeycomb panels act somewhat like I-beams: the facing correspond to
flanges and carry the tensile and compressive stresses, whereas the core corresponds to
the web of an I-beam and carries the shear. The core also helps to prevent buckling and
wrinkling of the faces.

The formulas developed in Section 2.1 can be used for honeycomb structures too if the
proper value of the flexural rigidity D is used. Since the core material is assumed to
provide no stiffness to the structure, flexural rigidity D for the honeycomb panel can be
obtained as:
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where E is the Young’s modulus of the facing material, ν its Poisson’s ratio, h is the total
thickness of the honeycomb structure, and c is the thickness of the honeycomb core (as
defined in Fig. 4).
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3. Finite element modeling

A 2-D finite element model was set up in ANSYS to study the deflections of the
honeycomb panels under their own weight and for different support conditions. The
model utilizes SHELL63 elastic elements which have both bending and membrane
capabilities. The element thickness was input as the total thickness of the honeycomb
panel. The material properties such as Young’s modulus and Poisson’s ratio, for this
element were taken to be the same as the material properties for the face sheets which are
made of fiber glass epoxy laminates (FR4) for our case. Note that for certain non-
homogeneous or sandwich shell applications, a real constant named RMI can be defined
for SHELL63 elements. RMI is the ratio of the bending moment of inertia to be used to
that calculated from the input thicknesses. For our case RMI can be defined as:
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A value of RMI computed from equation (6) was used to compute out of plane
deflections of the honeycomb panel under their own weight for different support
conditions.

As a first step, computations were performed on a simply supported rectangular beam
with a uniformly distributed normal load applied to it. Theoretical solutions for this case
can be obtained fairly easily. The finite element solution obtained for this simple case
was verified with the theoretical computations and the two results matched very well.
This gave us confidence in our model so that we could extend it for the case of actual
panels and study their deformation behavior under different support conditions.

Since a simply supported panel would deform more than a panel that is held rigidly at its
ends, a case of simply supported panel was investigated. The weight of the panel was 60
lbs (27.3 kg) which was assumed to be uniformly distributed over the entire surface area
(of 3.84 sq. meter) of the panel. This gave a force per unit area acting on the panel of 70
N/m2. Fig. 5 shows the contour plot of out of plane displacement for this case. A
maximum out of plane displacement of 0.437 x 10-3 m (0.017”) is obtained for this
simple case.

Referring back to Fig. 2, we can see that the panel is also supported at 4 other points in
between using buttons of precise thicknesses. The area of the panel supported at these
buttons was originally designed to be 0.1 inch square for each button support. However,
on assembling the seven panels, it was observed that there was excessive bowing of the
panels near these button supports due to the very high normal stresses acting on the panel
at these four points of support. Thus, it was of interest to know as to what forces act on
these 4 points of support in the actual assembly of the honeycomb panels. Also, to get an
estimate of the localized panel deformation due to these forces, some experiments were
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performed in the Material Development Laboratory, where small samples (such as 1” x
1”) of the honeycomb material were loaded using the original buttons and a load-
deflection curve was obtained.

A finite element model of a single honeycomb panel was set up, where the panel was
simply supported at the 4 locations corresponding to the location of the buttons, in
addition to being simply supported all along its perimeter. The deflection of the panel due
to its own weight was again studied. Fig. 6 shows the contour plot of out of plane
displacement for this case. Also, the reaction forces acting on the four buttons were
obtained to be 39 N, 33.4 N, 26.5 N and 30.3 N. From the solution for a single panel, an
estimate was made for the reaction forces at the bottom most panel of an assembly of
seven honeycomb panels. Based on this estimate of maximum reaction force and
experimental data obtained at the Material Development Laboratory, it was concluded
that the present design of the buttons was not sufficient to adequately support the panels.
It was decided to increase the area of support provided by the buttons (so as to reduce the
compressive stresses) based on the finite element results and the experimental data. A set
of panel was assembled based on this modified design of the buttons and was observed to
perform within the design constraints.
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